

The Company

TEMAK is a Greek Company founded in 1972 with the purpose to study, design & manufacture Water Treatment Systems.

Headquarters

Production Department

Certificates

ISO 9001: 2015
Production Quality

ISO 14001: 2015 Environmental Quality

EC CERTIFICATE

OHSAS 18001: 2007
Occupational Health
& Safety Management Systems

Applications – High Quality Products & Services

Power Plants

Public Sector

Hemodialysis Centers & Hospitals

Tourism Sector (HO.RE.CA.)

Marine Industry

Greenhouses
Organic Farms
& Other

Housing Complexes & Residence

Indicative Installations

Feed Water Quality: Sea Water

Product Water Quality: Potable

Hospital

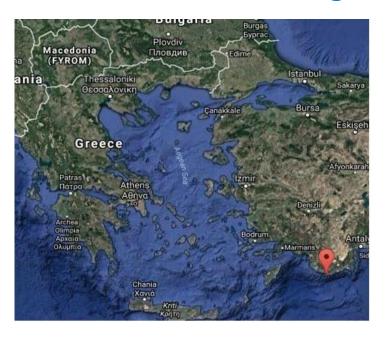
Capacity: 35 m³/day Feed Water Quality: Network Product Water Quality: Hemodialysis Standards Capacity: 125 m³/day Feed Water Quality: Sea Water Product Water Quality: Potable Capacity: 500 m³/day
Feed Water Quality: Sea Water
Product Water Quality: Potable

Indicative Installations

Power Plant Capacity: 960m³/day Feed Water Quality: Sea Water Product Water Quality: 300µS/cm

Capacity: 2.800 m³/day
Feed Water Quality: Brackish Water
Product Water Quality: <40µS/cm

Capacity: 60 m³/day
Feed Water Quality: Sea Water
Product Water Quality: Potable



Capacity: 4.000 m³/day Feed Water Quality: Heavy Brackish Product Water Quality: Irrigation

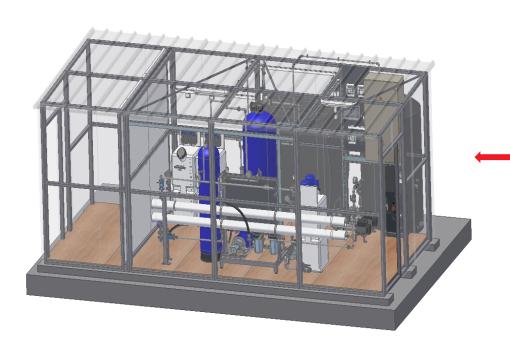
Innovative Solution & Technology – CASE STUDY

AUTONOMOUS REVERSE OSMOSIS (RO) DESALINATION SYSTEM POWERED BY A SMALL PHOTOVOLTAIC (PV) SYSTEM AT AN ISOLATED GREEK ISLET - STRONGILI

Isolated Islet - Strongili

- 1km² Island in the South East Mediterranean sea
- 20 people located on the Islet
- Lacks basic infrastructure (ports, roads, vehicles)
- Not connected to the electricity grid
- No natural sources of fresh water
- Max Daily Water requirements: 4000L/day

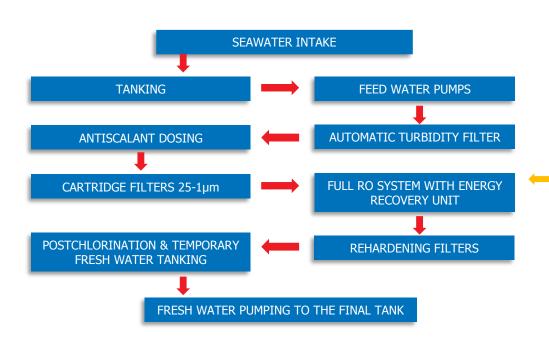
Water Supply to Strongili Islet?


Via small tanker ships

- High Cost: 20€/m³!
- Infrequent Schedule Once a week (depending on weather conditions)
- Catering to more than 15 Islets together
- Sometimes.. No water supply for several days!

The Idea?

PERMANENT ON SITE WATER PRODUCTION VIA A
CONTAINERIZED AUTONOMOUS REVERSE OSMOSIS (RO) DESALINATION
SYSTEM POWERED BY A SMALL PHOTOVOLTAIC (PV) SYSTEM


The Idea?

The Solution (Technology & Process Design)

Design Characteristics

Reverse Osmosis

- Feed Water TDS: 42.000ppm
- Open intake Slit Density Index (SDI) <5
- RO unit hourly production: **0.85** m³
- Hour of operation: 5 hours
- Daily production: 4m³
- RO unit recovery: **32.56%**
- Power consumption: 5.4kW
- Specific Energy Consumption: 6.35kWh/m³

PV Panels

- PV Panels total capacity: 10kW
- 39 panels x 260W each
- PV Panels surface : 300m²
- Storage capacity of batteries: 40kWh
- Battery autonomy: 1.5 days

Produced water quality in comparison to the parametric values

PARAMETER	METHOD	UNIT	PARAMETRIC VALUE	RESULT
Hydrogen ion concentration (pH)	ISO 10523:2008	pH units	6.5- 9.5	7.7
Conductivity (25°C)	ISO 7888: 1995	μS/ cm	<2500	656 💳
Total Hardness	ELOT 170: 1980	mg/I CaCO3	<100*	26
Alkalinity	ISO 9963-1: 1994	mg/I CaCO3		22
Bicarbonate	ISO 9963-1: 1994	mg/l		27
Total Dissolved Solids (as NaCl)		mg/l		314
Barium (Ba)	ICP- MS	μg/l	<700	6.23
Calcium (Ca)	ELOT 169: 1978	mg/l	<100*	9.62
Magnesium (Mg)		mg/l	<50*	<5
Potassium (K)	ICP- MS	mg/l	<12	0.83
Sodium (Na)	ICP- MS	mg/l	<200	4.32
Strode (Sr)	ICP- MS	μg/l		11.2
Chloride (Cl)	ISO 9297: 1989	mg/l	<250	193
Fluorine (F)	APHA 4500 F-D, 22 nd EDITION	mg/l	<1.5	< 0.05
Nitrate (NO3)	LCK 339	mg/l	<50	<3
Sulfate (SO4)	APHA 4500 F-D, 22 nd EDITION	mg/l	<250	<7
Silicon Dioxide (SiO2)	HACH 8186	mg/l		4.7

^{*}Taste, odor and appearance aspects

The Challenge

Flexibility

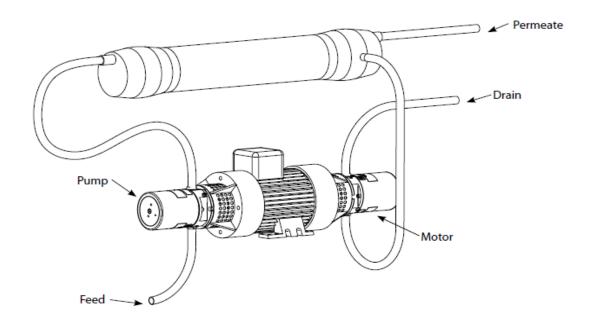
On site assembly of the plant due to transportation and access difficulties

Container and RO unit had to be assembled in the factory

Disassembled and placed on truck to be transported to the shipping port

Shipped to the Island of MEGISTI & Transferred to Island of Strongyli

Carried Equipment and material on site / Reassembled & Commissioned



The Challenge

Minimum power consumption

ERD device to minimize power consumption and downsize the PV system

APP-APM energy recovery device

Specific Energy Consumption:

3.45kWh/m³

Instead of

6.0kWh/m³

The Challenge

Reliability

Flawless technical design that minimizes the risk of technical problems as there is no an alternative water source.

Robustness

Robust construction that can endure extreme conditions.

RO Maintenance

- Cartridge filter replacement every 4 months
- DANFOSS APP/APM system service every two years
- Chemical cleaning (not made yet!)
- Membrane changes: Every 5 years, according to membrane guideline

PV Maintenance

• Check once a year, the level of electrolytes contained in batteries and filling them with RO product water

Battery replacement, after 13 years of operation (2000 Cycles)

Return on Investment

Operation Parameters (for 3 years operation)

Battery Life [cycles]	Hours or system operation in 3 years (data from control panel) [hr]	RO Hourly production [m³/hr]	m³ product/year	Water transportation cost/ m ³ [€]	Water transportation cost/ year	RO operation cost/ m³ [€]	RO operation cost/year [€]
2000 (corresponds to 13 years but estimated 10 years)		0,85		20	6,040	0,05	16

The water up to 2012 was transferred to Strongili Island by an army's boat, with a cost higher than $20 \in /m^3$.

Full Capacity Operation Cost (365 days/year, 5h/day)

Interest rate	8%		
NPV	133.651,79€		
IRR	26%		
Payback time>[years]	4		

The NPV and IRR values in case of full operation (5 hours/day and 365 days/ year) of the system are presented.

The production per year will be 1551.3 m3 instead of 302 m³.

if the system operated in full capacity, it would be a profitable investment with an NPV of 133.651,79 € and the IRR around 26%, and a payback time of 4 years.

Conclusions

- The presented system proved to be an ideal solution for ensuring constant fresh water in an isolated region that lack basic infrastructure or suffer from drought region:
 - Fully Autonomous solution (Independent of electrical grid)
 - Fully Automatic
 - Highly reliable and robust
 - Minimum operational requirements and cost

More importantly!

• A profitable investment: Payback time < 4 years since cost of production of water by RO is 0.05 €/m³ instead of 20 €/m³ of that shipped by water tankers.

INTERNATIONAL AWARDS

THANK YOU FOR YOUR KIND ATTENTION!